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REGULAR PARTIALLY INVARIANT SOLUTIONS

OF RANK 0 AND DEFECT 1 OF EQUATIONS OF AXISYMMETRIC MOTIONS

OF A VISCOUS HEAT-CONDUCTING PERFECT GAS

UDC 519.46:(533+533.16+536.23)D. M. Dobrikov

All partially invariant solutions of rank 0 and defect 1 of the equations of axisymmetric motions
of a viscous heat-conducting perfect gas with a polytropic equation of state that are nonreduced to
invariant solutions are described. The gas motions corresponding to these solutions in time and space
are presented.

1. Problem Formulation. A system of equations describing axisymmetric motions of a viscous heat-
conducting perfect gas with a polytropic equation of state is considered:

ρ(ut + uur + wuz) = −pr − (2/3)(µ(ur + wz + u/r))r + 2(µur)r + (µ(uz + wr))z + 2µ(u/r)r,

ρ(wt + uwr + wwz) = −pz − (2/3)(µ(ur + wz + u/r))z + 2(µwz)z + (µ(uz + wr))r + µ(uz + wr)/r,

ρt + uρr + wρz + ρur + ρwz + ρu/r = 0, (1.1)

εt + uεr + wεz + p(ur + wz + u/r) = (æTr)r + (æTz)z + æTr/r

+ µ((4/3)(u2
r − urwz + w2

z + u(u/r − ur − wz)/r) + (wr + uz)2).

Here u and w are the velocity-vector components written in cylindrical coordinates r, z, and ρ is the density, T is
the temperature, p = RρT is the pressure, µ = m0T

ω is the viscosity, æ = æ 0T
ω is the thermal conductivity,

ε = cV T is the internal energy, cV is the specific heat capacity at constant volume, ω is a constant, R is the
universal gas constant, and t is the time.

This paper investigates exact solutions of system (1.1) obtained by methods of group analysis of differential
equations [1]. Examples of constructing exact solutions by group methods for equations of a viscous incompressible
liquid are described in [2] and for viscous heat-conducting gas equations in [3–5]. The goal of the present work is
to construct new partially invariant solutions of rank 0 and defect 1 which are nonreduced to invariant solutions.
Some results presented below were formulated in [6].

It was shown in [3] that system (1.1) admits the Lie algebra L5, and its basis was written. Using formulas
for recalculation of basis operators with substitution of variables, we can easily reveal that the basis operators in
the variables t, r, z, u, w, ρ, and T have the form

X1 = ∂z, X2 = t∂z + ∂w, X3 = ∂t, X4 = t∂t + r∂r + z∂z − ρ∂ρ,

X5 = r∂r + z∂z + u∂u + w∂w + 2(ω − 1)ρ∂ρ + 2T∂T .
(1.2)

To simplify system (1.1), we can assume that R = 1 and m0 = 1 with accuracy up to equivalence transformations
found in [3]. The optimal system of subalgebras of the Lie-algebra L5 was constructed in [3]. Let us consider
four-dimensional subalgebras.
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TABLE 1

Subalgebra Subalgebra basis The subalgebra invariants

4.1 1, 2, 3, 4 + α5 (α 6= −1) I1 = u1+αr−α, I2 = ρ1+αr2α(1−ω)+1, I3 = T 1+αr−2α

4.1a 1; 2; 3; 4− 5 (α = −1) I1 = r, I2 = ρu1−2ω , I3 = Tu−2

4.2 1, 3, 4, 5 I1 = w/u, I2 = ρru1−2ω , I3 = Tu1−2ω

4.3 1, 2, 4, 5 I1 = ut/r, I2 = ρt2ω−1r2(1−ω), I3 = Tt2r−2

4.4 1, 2, 3, 5 I1 = u/r, I2 = ρr2(1−ω), I3 = Tr−2

The optimal system of four-dimensional subalgebras of the Lie-algebra L5 is presented in Table 1. The second
column shows the numbers of basis operators from the complete basis (1.2) (4 +α5 denotes a linear combination of
the operators X4 + αX5). The complete set of functionally independent invariants for each subalgebra is listed in
the third column.

Partially invariant solutions for subalgebras 4.1–4.4 have rank 0 and defect 1, except for subalgebra 4.1 whose
solutions have rank 1 and defect 2 and are not considered here. In the present work, all partially invariant solutions
of rank 0 and defect 1 are constructed, and their properties are analyzed. Substitution of the solution representation
for subalgebras into the initial system yields a four-equation system with partial derivatives of one function. The
system is overspedetermined, and it is necessary to analyze it for compatibility. The compatibility analysis of
overdetermined systems is a rather complex task and requires a large volume of analytical transformations; therefore,
all computations were carried out on a personal computer using the Reduce language of analytical computations.
During the investigations, we determined the system compatibility conditions, the specific form of the solution, as
well as the relations between the constants that enter into the solution representation. The following conditions are
imposed on the solutions obtained:

ρ > 0, T > 0, æ > 0. (1.3)

Solutions not satisfying conditions (1.3) are not considered.
For the solutions obtained, the problem of reduction of partially invariant solutions is studied, which is

formulated as follows. Let a partially invariant solution of rank s and defect δ be given. It is necessary to find
whether there exists a subgroup for which the solution is also partially invariant; the relationships s′ = s and δ′ < δ

are valid for rank s′ and defect δ′ of this solution. The importance of studying the reduction problem is determined
by the fact that, generally speaking, it is simpler to find solutions with a smaller defect. Partially invariant solutions
of rank 0 and defect 1 are analyzed in the present work. Since the solution rank should not increase during reduction,
it is possible to speak only about reduction to invariant solutions of rank 0 described in detail in [3]. Therefore, if
reduction of the solutions obtained is shown, their further investigation is not interesting.

Further, we consequently consider subalgebras shown in Table 1 and analyze the compatibility of the overde-
termined systems arising. The problem of reduction of the solutions obtained is investigated, and the possibility of
reduction to invariant solutions is shown for some cases. For partially invariant solutions nonreduced to invariant
solutions, some properties of the corresponding gas motions are investigated.

2. Subalgebra 4.1. The solution of the problem is presented in the following form:

u = u0r
β , ρ = ρ0r

2ωβ−β−1, T = T0r
2β , w = w(t, r, z), β = α/(1 + α). (2.1)

Substituting presentation (2.1) into system (1.1), we obtain

wrz − 4ωβwz/r + (4(βu0(2ωβ + β − 1)− u0)− 3T−ω0 ρ0(T0(2ωβ + β − 1) + βu2
0))rβ−2 = 0;

wrr + 4wzz/3− T−ω0 ρ0r
−β−1(wt + wwz) + (2ωβ + 1− T−ω0 ρ0u0)wr/r = 0; (2.2)

wz + 2ωβu0r
β−1 = 0; (2.3)

w2
r + 4w2

z/3− (T 1−ω
0 ρ0 + 4u0(β + 1)/3)rβ−1wz − 2cV T 1−ω

0 βu0r
3β−2ωβ−1

+ (4æ 0T0β
2(ω + 1)− T 1−ω

0 ρ0u0(β + 1) + 4u2
0(β2 − β + 1)/3)r2(β−1) = 0. (2.4)
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Integrating (2.3), we obtain w = −2ωβu0r
β−1z + f(t, r). Then, (2.4) has the form

F (r) + (fr − 2ωβ(β − 1)u0r
β−2z)2 = 0. (2.5)

Splitting (2.5) in powers of z, we obtain ωβu0 = 0 and w = g(t) + h(r). It should be noted that, at ω 6= 0, only an
identically constant function w ≡ w0 is possible. The case ω = 0 is further considered.

Substituting the expression for w into (2.2) and differentiating the latter with respect to t, we have g′′ = 0,
wherefrom g = c1t+ c2 is obtained. As a result, Eq. (2.2) takes the form

rh′′ + (1− λ)h′ − c1ρ0r
−β = 0, λ = ρ0u0.

Solving this equation, we determine the form of the function w:

w =

{
c3r

λ/λ− c1ρ0r
1−β/[(β + λ− 1)(1− β)] + c1t+ w0, β 6= 1− λ,

c3r
λ/λ+ c1ρ0r

λ(ln r − 1/λ)/λ+ c1t+ w0, β = 1− λ.
(2.6)

Let us substitute (2.6) into (2.4) and split in powers of r. This procedure is sufficiently labor-consuming,
but finally we obtain w ≡ w0 for β = 1− λ and c1c3 = 0 for β 6= 1− λ.

Let c1 = 0. Then, Eq. (2.4) yields 3β − 2λ+ 1 = 0, and the solution acquires the final form:

w = w1r
(3β+1)/2 + w0, w1 = const, w0 = const. (2.7)

Let c3 = 0. In this case, splitting of Eq. (2.4) in powers of r (2.4) gives two variants of the solution: β = 1/2
or β = 1/5; however, for β = 1/2, Eq. (2.4) yields cV T0 = 0, which contradicts conditions (1.3). For β = 1/5, the
solution has the form

w = w1r
4/5 + c1t+ w0. (2.8)

Let us study the possibility of reducing the solutions obtained to invariant ones. Let an arbitrary operator
of subalgebra 4.1 considered be written in the form

H = a1X1 + a2X2 + a3X3 + a4(X4 + αX5) = (a3 + a4t)∂t + a4(1 + α)r∂r + (a1 + a2t+ a4(1 + α)z)∂z

+ a4αu∂u + (a2 + a4αw)∂w + a4(2α(ω − 1)− 1)ρ∂ρ + 2a4αT∂T , ai = const (i = 1, . . . , 4).

By virtue of the solution representation (2.1), it suffices to verify the invariance only for the function w. Let us first
consider the case of the identically constant function w ≡ w0:

H(w − w0)
∣∣∣
w≡w0

= a2 + a4αw0 = 0.

The equality to zero is reached by choosing a2 = −a4αw0. It is easy to find that the solution is invariant with
respect to the three-dimensional subalgebra with the basis X1, X3, X4 + αX5 − αw0X2.

Let us investigate the possibility of reduction for the solution of the form w = w1r
4/5 + c1t + w0; α =

β/(1− β) = 1/4. For this solution, we obtain

H(w1r
4/5 + c1t+ w0 − w)

∣∣∣
w=w1r4/5+c1t+w0

= (a4w1r
4/5 + c1(a3 + a4t)− a2 − a4w/4)

∣∣∣
w=w1r4/5+c1t+w0

= 3w1a4r
4/5/4 + 3c1a4t/4 + c1a3 − a4w0/4− a2 = 0.

The equality to zero is possible in one of the two cases: 1) a2 = −a4w0/4, w1 = 0, and c1 = 0; 2) a4 = 0
and a2 = c1a3. In the first case, an identically constant solution is obtained; the possibility of its reduction is
demonstrated above. For a4 = 0, we obtain invariance with regard to the subalgebra with the basis X1 X2 + c1X3,
but the solution invariant with regard to this subalgebra has rank 1, which does not correspond to the definition
of reduction, since the rank should not increase during reduction. Thus, solution (2.8) is not reduced to invariant
ones. Similar arguments allow one to conclude that solution (2.7) is not reduced to invariant ones either.

Thus, two families of partially invariant solutions that are not reduced to invariant ones are obtained for
subalgebra 4.1.
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Fig. 1

1. Stationary gas flow with constant viscosity and thermal conductivity (ω = 0). The solution is written in
the form

u = u0r
β , ρ = ρ0r

−β−1, T = T0r
2β , w = w1r

(3β+1)/2 + w0. (2.9)

Solution (2.9) corresponds to a flow from a constant-power source distributed along the Oz axis. For this solution,
the values of β ∈ (0, 1) are set, as well as arbitrary values of w0 and thermodynamic parameters cV and æ0. The
remaining constants entering into the solution representation are expressed through these parameters from the
relationships that can be easy obtained from the initial system. The streamlines have the form

z = A1 + 2w1r
(β+3)/2/[(β + 3)u0] + w0r

1−β/[(1− β)u0].

The streamlines for solution (2.9) are shown in Fig. 1. The whole picture of the flow is obtained by shifting the
surface presented in Fig. 1 along the z axis.

2. Nonstationary gas flow with constant viscosity and thermal conductivity (ω = 0). The solution is
represented as follows:

u = u0r
1/5, ρ = ρ0r

−6/5, T = T0r
2/5, w = w1r

4/5 + c1t+ w0. (2.10)

Solution (2.10) corresponds to the motion with a constant-power source distributed along the Oz axis. For solution
(2.10), the values of u0 > 0, arbitrary values of w0 and thermodynamic parameters cV and æ 0 are prescribed; the
remaining constants entering into the solution representation are expressed through them. The trajectories have
the form

r(t) = (4u0(t+A1)/5)5/4, z(t) = A2 + 8w1t
2/(25ρ0) + (4w1u0A1/5 + w0)t.

Let us consider a sphere filled by a gas at the initial time. In this case, the solution describes sphere deformation
into an expanded torus (Fig. 2). Figure 2 shows the positions of domains occupied by the gas at the initial and
current times.

3. Subalgebra 4.2. The solution of the problem is represented in the form

w = w0u, ρ = ρ0r
−1u1−2ω, T = T0u

2, u = u(t, r, z). (3.1)

Substituting representation (3.1) into system (1.1), we obtain

4urr + w0urz + 3uzz + 2ω(4u2
r + w0uruz + 3u2

z)/u+ 4(1− ω)r−1ur

− 3ρ0T
−ω
0 ((2ωT0 + T0 + 1)uur + w0uuz + ut)/(ur) + (3ρ0T

1−ω
0 − 4)r−2u = 0; (3.2)
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Fig. 2

3w0urr + urz + 4w0uzz + 2ω(3w0u
2
r + uruz + 4w0u

2
z)/u+ (1− 4ω)r−1uz

− 3ρ0T
−ω
0 (w0uur + (2ωT0 + T0 + w2

0)uuz + w0ut)/(ur) + 3w0r
−1ur = 0; (3.3)

2ωu(ur + w0uz) + (2ω − 1)ut = 0; (3.4)

6æ0T0(urr + uzz) + u−1((3w2
0 + (12ω + 6)æ0T0 + 4)u2

r + 2w0uruz

+ (4w2
0 + (12ω + 6)æ0T0 + 3)u2

z)− 6cV T 1−ω
0 u−2ω(uur + w0uuz + ut)

+ 6æ0T0r
−1ur − (3ρ0T

1−ω
0 + 4)r−1(ur + w0uz)− (3ρ0T

1−ω
0 − 4)r−2u = 0. (3.5)

System (3.2)–(3.5) is a system of one first-order equation and three second-order equations with partial
derivatives of the function u(t, r, z). Studying compatibility of this system requires more effort than other systems
considered in the present paper. To analyze this system, a great number of analytical calculations are necessary:
therefore, only the main results are presented below.

3.1. Nonstationary Case. Let ω 6= 0. Adding three differential corollaries of Eq. (3.4) to Eqs. (3.2), (3.3), and
(3.5), we obtain a system of six second-order quadratic equations linear in major derivatives. All second derivatives
utt, utr, utz, urr, urz, and uzz can be expressed as quadratic polynomials from the first derivatives ut, ur, and uz
with coefficients depending on u. Let the conditions of equality of the third mixed derivatives be written as

(utt)r = (utr)t, (utt)z = (utz)t, (urr)z = (urz)r, (urz)z = (uzz)r,

(utr)r = (urr)t, (utr)z = (urz)t, (utz)r = (urz)t, (utz)z = (uzz)t.

Substituting the expressions for the second derivatives into these conditions, we obtain eight equations which are
third-order polynomials of the first derivatives ut, ur, and uz. These expressions are not presented because of their
awkwardness. Combining them, however, we can obtain a corollary that does not include derivatives and is an
exponential expression of the function u. An analysis of this corollary reduces to consideration of particular cases
ω = ±1, ω = ±2, ω = ±1/2, ω = ±3/2, and ω = −1/4. All these cases yield either an identically constant solution
or a conflict with conditions (1.3). Thus, there are no nontrivial solutions in the nonstationary case.

3.2. Stationary Case. Let ω = 0. Then, Eq. (3.4) takes the form ut = 0, and three second-order equations
independent of t remain in system (3.2)–(3.5). In this case, to investigate the system, it is convenient to introduce
the following notation:

ξ(r, z) = ur + w0uz, η(r, z) = ur − w0uz. (3.6)
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Then, the system takes the form

(3w2
0 + 4)uξr + w0uξz + (3w2

0 + 3)uηz − 3w0r
−1uη

− (3ρ0w
2
0 + 3ρ0 + 3ρ0T0 − 4)r−1uξ + (3ρ0T0 − 4)r−2u2 = 0; (3.7)

w0uξr − uξz + (3ρ0T0 − 1)r−1uη + (3ρ0T0 − 4)w0r
−2u2 = 0; (3.8)

6æ0T0u(ξr + ηz) + (6æ0T0/(w2
0 + 1) + 3)(ξ2 + η2) + ξ2 − (6æ0T0/(w2

0 + 1))w0r
−1uη

− 6cV T0u
2ξ − (3ρ0T0 − 6æ0T0/(w2

0 + 1) + 4)r−1uξ − (3ρ0T0 − 4)r−2u2 = 0. (3.9)

According to (3.6), the first derivatives of the functions ξ and η are related as w0ξr−ξz+ηr+w0ηz = 0. Considering
this fact, from system (3.7)–(3.9), the derivatives ξr, ξz, ηr, and ηz can be expressed as quadratic polynomials of
ξ and η with coefficients depending on u. The conditions of equality of the mixed derivatives (ξr)z = (ξz)r and
(ηr)z = (ηz)r are used as compatibility conditions. Substituting the expressions for the derivatives of ξ and η into
these conditions, we obtain two equations, which are third-order polynomials of ξ and η. Repeatedly differentiating
them with respect to r and z and eliminating the derivatives, we obtain another four corollaries of the system.
These expressions are not shown because of their awkwardness. However, there exists their combination in the form
k1ξ + k2η + k3r

−1u = 0, where k1, k2, and k3 are constants. Substituting this expression into system (3.7)–(3.9),
we obtain the solution in the form u = k/r, where k = const. At the same time, it follows from Eq. (3.7) that
T0 = −1/2, which contradicts conditions(1.3), i.e., the solution of the form u = k/r is nonphysical. Thus, there are
no nontrivial physical solutions for subalgebra 4.2.

4. Subalgebra 4.3. The problem solution is represented in the form

u = u0r/t, ρ = ρ0r
2(ω−1)t1−2ω, T = T0r

2t−2, w = w(t, r, z). (4.1)

Substituting representation (4.1) into system (1.1), we obtain

wrz − (4ω/r)(wz − u0/t)− 3T−ω0 ρ0(2ωT0 + u2
0 − u0)/(rt) = 0;

wrr + 4wzz/3− T−ω0 ρ0t(wt + wwz)/r2 + (2ω + 1− T−ω0 ρ0u0)wr/r = 0; (4.2)

twz + 2ω(u0 − 1) + 1 = 0; (4.3)

w2
r + 4w2

z/3− (T 1−ω
0 ρ0 + 8u0/3)wz/t+ 2cV T 1−ω

0 (1− u0)r2−2ωt2ω−3

+ (4æ0T0(ω + 1) + 4u2
0/3− 2T 1−ω

0 ρ0u0)t−2 = 0. (4.4)

Integrating (4.3), we find

w = (−2ωu0 + 2ω − 1)z/t+ f(t, r). (4.5)

Substituting (4.5) into Eq. (4.2) and differentiating it with respect to z, we obtain two variants of the solution:
(u0 − 1)ω + 1 = 0 and 2(u0 − 1)ω + 1 = 0. Let us consider the first variant (similar calculations are used for the
second one).

Let us introduce a new variable s = r/t and pass to the function h(s, t) = f(r, t). Then Eqs. (4.2) and (4.4)
take the form

s2hss + b2shs − T−ω0 ρ0(tht + h) = 0; (4.6)

h2
s + 2b0cV s2(1−ω)t+ b1 = 0, (4.7)

where b0, b1, and b2 are constants expressed through ρ0, T0, ω, and æ0. Investigating Eqs. (4.6) and (4.7) for
compatibility, we can obtain a corollary that does not contain the function h and its derivatives. Splitting the
corollary in powers of t, the following expression can be derived as compatibility conditions:

2Tω0 (4− ω2)ω − (5ω − 4)ρ0 = 0, b1 = 0.

For b1 = 0, the function h can easily be determined from (4.7). In the initial notation, the sought function w has
the form

w = z/t+ w1r
2−ωtω−3/2, w1 = const. (4.8)

801



Fig. 3

Similar calculations for the case 2(u0 − 1)ω + 1 = 0 yield the following solution:

w = w1r
2−ωtω−3/2 + w0, w1 = const, w0 = const. (4.9)

It is not difficult to verify that solutions (4.8) and (4.9) are not reduced to invariant ones. Let it be shown
for (4.9). Let the arbitrary operator of subalgebra 4.3 be written as

H = a1X1 + a2X2 + a4X4 + a5X5 = a4t∂t + (a4 + a5)r∂r + (a1 + a2t+ (a4 + a5)z)∂z

+ a5u∂u + (a2 + a5w)∂w + (2(ω − 1)a5 − a4)ρ∂ρ + 2a5T∂T , ai = const (i = 1, . . . , 5).

We act on (4.9) by the operator H and verify if the following equality is satisfied:

H(w1r
2−ωtω−3/2 + w0 − w)

∣∣∣
w=w1r2−ωtω−3/2+w0

= −a2 − a5w0 + (a4/2 + a5(1− ω))w1r
2−ωtω−3/2 = 0.

This equality is valid for a2 = −a5w0 and a4 = 2a5(ω − 1). Thus, solution (4.9) is invariant with respect to the
two-dimensional subalgebra with the basis X1, −w0X2 + 2(ω − 1)X4 + X5. The rank of the invariant solution
obtained on the basis of this subalgebra is equal to 1; therefore, reduction is impossible in the given case. Similar
calculations give the same results for solution (4.8).

Thus, two families of partially invariant solutions nonreduced to invariant solutions are obtained for subal-
gebra 4.3.

1. Nonstationary gas motion:

u = u0r/t, ρ = ρ0r
2(ω−1)t1−2ω, T = T0(r/t)2, w = z/t+ w1r

2−ωtω−3/2. (4.10)

For solution (4.10), the values of ω ∈ (−1, 0) and cV are given, and the remaining constants entering into the
solution representation are expressed through them. The trajectories have the form

r(t) = A1t
(ω−1)/ω, z(t) = A2t+ (2ω/(3ω − 4))w1A

2−ω
1 t(5ω−4)/(2ω).

2. Nonstationary gas motion:

u = u0r/t, ρ = ρ0r
2(ω−1)t1−2ω, T = T0(r/t)2, w = w1r

2−ωtω−3/2 + w0. (4.11)

For solution (4.11), the values of ω ∈ (−1, 0) and arbitrary values of w0 and cV are given; the remaining constants
entering into the solution representation are expressed through them. The trajectories have the form

r(t) = A1t
(2ω−1)/(2ω), z(t) = A2 + w0t+ (ω/(2ω − 1))w1A

2−ω
1 t(2ω−1)/ω.

Solution (4.11) makes sense for positive t; therefore, a certain value t0 > 0 is chosen as the initial time. Let us
consider a gas-filled sphere at the initial time. In this case, the solution describes deformation of this sphere (Fig. 3).
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5. Subalgebra 4.4. The solution of the problem is represented as

u = u0r, ρ = ρ0r
2(ω−1), T = T0r

2, w = w(t, r, z). (5.1)

Substituting representation (5.1) into system (1.1), we obtain

wrz − 4ω(wz − u0)/r − 3T−ω0 ρ0(2ωT0 + u2
0)/r = 0; (5.2)

wrr + 4wzz/3− T−ω0 ρ0(wt + wwz)/r2 + (2ω + 1− T−ω0 ρ0u0)wr/r = 0; (5.3)

wz + 2ωu0 = 0; (5.4)

w2
r + 4w2

z/3− (T 1−ω
0 ρ0 + 8u0/3)wz − 2cV T 1−ω

0 u0r
2(1−ω)

+ 4æ0T0(ω + 1) + 4u2
0/3− 2T 1−ω

0 ρ0u0 = 0. (5.5)

Integrating (5.4), we find

w = −2ωu0z + f(t, r). (5.6)

Substituting (5.6) into system (5.2)–(5.5) and analyzing the relationships obtained, we obtain ω = 0 and u0 = 0.
In this case, Eq. (5.5) has the form f2

r + 4æ 0T0 = 0, wherefrom there follow æ 0 = 0 and fr = 0 by virtue of
conditions (1.3). Equation (5.3) yields ft = 0, wherefrom we have w ≡ w0. It is shown that this solution is reduced
to invariant solutions constructed on the subalgebra with the basis X1, X3, and X5 − w0X2. Therefore, there are
no nonreduced solutions for subalgebra 4.4.

Thus, all partially invariant solutions of rank 0 and defect 1 for a system describing axisymmetric motions
of a viscous heat-conducting perfect gas are constructed in the paper.
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